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Theory

Section 1

Theory
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Theory

Problem description

Given: inputs xi ∈ Rdx , i = 1 . . .N and outputs yi ∈ Rdy of some
unknown function f : x → y
Goal: Find a surrogate model which predicts y = f (x) for a new x
Major Assumption: The output data yi lies on a lower-dimensional
manifold
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Figure : One example of in- and output data
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Theory

Basic Idea

Deal with the non-linearity of the manifold by locally approximating it
by affine/linear sub-spaces (i.e. a reduced order basis)
Associate each data point with the corresponding sub-space
Learn a rule for the input space, which associates a new point with
the ”best” subspace
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Figure : 4 sub-spaces and the resulting classification of the data points
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Theory

Probabilistic Formulation

The model considered can be thought of as a mixture model in the
output space with the mixing coefficients depending on x

P (y |x) =
∑M

m=1 P (c = m|x)︸ ︷︷ ︸
mixing coefficient for component m

distribution for component m︷ ︸︸ ︷
P (y |c = m)

To fit the model to data, i.e. train, we first parametrize it
(parameters θ)

Fitting the model is done by maximizing the complete data likelihood
(or posterior) using the Expectation Maximization (EM) algorithm
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Theory

Probabilistic Formulation 2

Complete data log posterior: logP (θ|c, y ; x) =

N∑
n=1

M∑
m=1

1 (cn = m) [logP (yn|cn = m, θ) logP (cn = m|θ; xn)]

+ logP (θ|x) + C (1)

For the expectation of the log posterior w.r.t. the distribution of c given
some fixed values θ∗ of the parameters this yields:

Q (θ|θ∗) = Ec [logP (θ|c , y ; x) |y ; θ∗] (2)

= Q (θy |θ∗) + Q (θc |θ∗) (3)

θy are the parameters of P (y |c = m) and θc of P (c = m|x)
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Theory

Probabilistic Principal Component Analysis

Probabilistic extension of the well known Principal Component
Analysis (PCA)
PCA finds the q dimensional subspace with the least squared
projection error
Sub-space is represented by the middle µ and the q vectors in
W ∈ Rdy ,q

P (y |c = m) = N (µm, Σm) and Σm = σ2
mI + WmW

T
m
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Figure : 4 sub-spaces and the resulting classification of the data points
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Theory

Obstacles in the way

1 The number of mixture components M is hard to determine a priori

2 Finding initial values for the parameters θ is hard (local minima)

3 Multi-class Classification (for M > 3) is not easy

Lukas Köstler Bachelor Thesis Presentation 9 / 40 February 12, 2016 9 / 40



Theory

Proposed Algorithmic solution

Start with only one mixing component and iteratively refine the
model by adding new components

The ”worst” mixing component is replaced by two new components

Each point that ”belonged” to the original component is ”assigned”
to one of the two succeeding components

This leads to a binary tree structure with mixture components on all
terminal leafs and binary classification at each internal node
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Theory

Illustrating Example: Initial configuration
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Theory

Illustrating Example: After first split
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Theory

Illustrating Example: Upper left leaf after split
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Theory

Illustrating Example: Whole tree after two splits
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Theory

Obstacles no longer in the way

1 The iterative refinement stops at a prescribed level of accuracy

2 At each split initial values for only two PPCAs have to be found. This
could be done via e.g. k-means or the responsibility split

3 At each Split only a binary classification problem has to be solved
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Theory

Classification

Because of the Tree structure only a binary classifier is needed

Tipping: Relevance Vector Machine (RVM) is a probabilistic and
mostly sparser version of the support vector machine (SVM)

Linking function: P (class = 1|x) = σ
(
wTφ (x)

)
= 1

1+exp{−wTφ(x)}

φ (x) = (φ1 (x) , . . . , φN (x)) are called the basis functions

Class labels: ci = 1 if point i belongs to class 1 and ci = 0 otherwise

Bernoulli-likelihood:
L = P (c |w ; x) =

∏N
i=1 σ

(
wTφ (xi )

)ci [1− σ (wTφ (xi )
)]1−ci
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Theory

Basis functions

bias term: φ (x) = 1

linear: φ (x) = x

polynomial: e.g. φ (x) = x1x2

Kernels: φ (x) = K
(
x , x (j)

)
and x (j) is mostly another data point

linear: K
(
x , x (j)

)
= xT x (j)

Polynomial: K
(
x , x (j)

)
=
(
γxT x (j) + c

)d
Gaussian/RBF: K

(
x , x (j)

)
= exp

(
−1
r2

∥∥x − x (j)
∥∥2

2

)
K
(
x , x (j)

)
represents a dot product in a possibly infinite dimensional

feature space
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Theory

RVM: example: Ripley Synthetic Data

Gaussian Kernels centered at each data point as basis functions
Color = class posterior
White line = decision boundary i.e.
P (class = 1|x) = P (class = 2|x) = 0.5
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Theory

Algorithm: Overview

Input: X, Y, q

Search the tree for all leafs suitable for splitting 

Possibly in parallel:

Split all suitable leafs

For each leaf attempted to split:

(a) Split was correct: Integrate new sub-leafs into tree structure

(b) Split didn't work: Increment the leaf-internal attempted splits counter 

Still splitable leafs?

End

No

Lukas Köstler Bachelor Thesis Presentation 19 / 40 February 12, 2016 19 / 40



Theory

MCR bound

The experiments show that the Missclassification Rate (MCR) of each
split is a parameter very well describing the overall performance of the
algorithm

Goal: establish a formula for the maximum MCR s.t. the split does
decrease the Predicted Squared Error

Assume y ∼ pN
(
µ1, σ

2
1I + W1W

T
1

)
+ (1− p)N

(
µ2, σ

2
2I + W2W

T
2

)
Formula for the simplified case q = q1 = q2 = 1,
‖w1‖2

2 = ‖w2‖2
2 = λ2 and the σ belonging to the PPCA for all points

one has:

MCRmax = (n − 1)
σ2 − σ2

1

‖µ1 − µ2‖2
2 + (1− cos2(∠(w1,w2)))λ2
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Theory

Sharpness-Increase

Problem: Sometimes the classifier assigns probabilities close to 0.5 to
most of the points ⇒ the difficulty of the problem is not (notably)
decreased by the split

Solution: After training increase the magnitude of w

Multiply the likelihood by a heuristic

Let ai = σ
(
wTφ (xi )

)
, then L̃ = P (c |w ; x) h (w)

similar to the inverse of the Gini impurity define:

h (w) =
∏N

i=1

[
1

(ai (1−ai )λ

]Ri

, λ ≥ 0

I showed that for wnew = αwold and λ < λmax = f
(
x ,R, wold

‖wold‖2

)
the

maximizer α∗ is existent and unique

For λ = 0.9λmax : α∗ is about 2 to 10 depending on the problem
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Theory

Adapted Gaussian Kernels

For this application it would be best to have:

K (x , xj) = exp
(
−1
r2 ‖f (x)− f (xj)‖2

2

)
Taylor expansion around xj : f (x) ≈ f (xj) + Df (xj) (x − xj)

K (x , xj) ≈ exp
(
− 1

r2 (x − xj)
T (Df (xj))T Df (xj) (x − xj)

)
Example: Let f (x) = bT x then K (x , xj) = exp

(
− 1

r2

(
bT (x − xj)

)2
)

Challenge: Estimate Df (xj) in an appropriate way, e.g. when
f (x) ∈ {0, 1}
Some more details in my thesis, but still more work to do
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Examples and Discussion

Section 2

Examples and Discussion
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Examples and Discussion

Kraichnan Orszag three mode problem (KO-3)

d

dt
z1 = z1z3

d

dt
z2 = −z2z3

d

dt
z3 = −z2

1 + z2
2

(4)

Initial Conditions:

z1(0) = 1 (fixed)

z3(0) = 1 (fixed)

z2(0) ∈ [−0.04, 0.04] s.t. z2(0) = 0.08x1 − 0.04

T ∈ [10, 12] s.t. T = 2x2 + 10

Problem setup:

input: x1, x2 ∼ unif (0, 1)

output: yi = zi (T )
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Examples and Discussion

KO-3: Parameters

Parameters used: N = 50to750 and 5000, q = 1, and max. depth =
3, 7 and 11

Different σ (0.005 and 0.00025) were used and I cross validated with
different data-sets

A very detailed analysis can be found in the thesis

I used radial basis functions, i.e.:
φ(x) = (1,KG (x , x (1)), ...,KG (x , x (m)))

m = min (N, 500) and the centers x (1), ..., x (m) are randomly drawn
without replacement from all training data points in each split
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Examples and Discussion

KO-3: Results: training points
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Examples and Discussion

KO-3: Results: segmentation
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Examples and Discussion

KO-3: Results: small trees
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Examples and Discussion

KO-3: Results: large tree

max depth = 11 → max number nodes = 2047

Tree grew 503 nodes

Root Mean Squared Test Error (NTest = 10000)

Tree: RMSETest ≈ 0.025 ≈ 0.041mY

PPCA: RMSETest ≈ 0.327 ≈ 0.542mY

mY = 1
Ndy

∑N
n=1

∑dy
d=1 abs

(
y

(n)
i

)
≈ 0.604

For max depth = 7 and N = 750 one already achieves
RMSETest ≈ 0.030
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Examples and Discussion

Heat Conduction in 2-D Plate: Setup

Steady state temperature distribution in a two dimensional plate

The plate is discretized using 10× 10 = 100 elements

The temperatures along each of the four boundaries is constant

The conductivity of each element is chosen at random

Finite Element Solver written by Constantin

Problem setup:

input: x = (Tlower ,Tright ,Tupper ,Tleft ,C1, . . . ,C100)

T... ∼ unif (−1, 1) and Ci ∼ max (N (1, 0.4) , 0.1)

output: yi = Ti the temperatures of the solution at the element
midpoints
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Examples and Discussion

Heat Conduction in 2-D Plate: Result

Parameters used: N = 20000, q = 2, σmax = 0.0025 ≈ 0.01σPPCA
and max. depth = 9

I used linear basis functions, i.e.: φ(x) = (1, x)

Tree grew to full size possible with max. depth = 9 → 255 internal
nodes and 256 leafs

Root Mean Squared Test Error (NTest = 10000)

Tree: RMSETest ≈ 0.035 ≈ 0.100mY

PPCA: RMSETest ≈ 0.236 ≈ 0.680mY

mY = 1
Ndy

∑N
n=1

∑dy
d=1 abs

(
y

(n)
i

)
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Examples and Discussion

Heat Conduction in 2-D Plate: Some Examples 1
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Examples and Discussion

Heat Conduction in 2-D Plate: Some Examples 2
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Examples and Discussion

Heat Conduction in 2-D Plate: Some Examples 3
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Examples and Discussion

Heat Conduction in 2-D Plate: Discussion

Fraction of weights acting on the conductivity:

fconductivity =
∑105

i=6 wi

2
∑5

i=2 wi+
∑105
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Examples and Discussion

Heat Conduction in 2-D Plate: Discussion

Relative improvement in standard deviation:

fσ =
weighted mean(σleft ,σright)

σbefore
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Results

Section 3

Results
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Results

Advantages of the Algorithm

The algorithm deals well with high dimensional output in terms of
needed data points

The algorithm deals well with discontinuities

For low dimensional input non-linearity is well handled

(P)PCA is well understood and easily interpretable

The algorithm is fully probabilistic

Maybe the method represents some generic principle that is applicable
to a wide range of problems
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Results

Main Challenge

The main challenge is finding the basis functions / classifier that well
suits the structure of the unknown function f

Possible solution could be:

Develop basis functions for common problems (FEM etc.)
Try to find basis functions that adapt to the data (Adapted Gaussian
Kernels)
Rigorously analyze the general structure of the problem and find
structure I did not think of
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Results

Possible Future Steps

Tackle the challenge from the slide before

Use classifiers that optimize some impurity/entropy criterion

The algorithm is inherently parallel → implement a parallel version
that can handle large data sets and large (possibly sparse) trees ⇒
possibility to compute high dimensional examples with complex basis
functions
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