Bachelor Thesis Presentation
 Probabilistic Machine Learning Tools For Reduced Order Basis Methods

Lukas Köstler

February 12, 2016
(1) Theory
(2) Examples and Discussion
(3) Results

Section 1

Theory

Problem description

- Given: inputs $x_{i} \in \mathbb{R}^{d_{x}}, i=1 \ldots N$ and outputs $y_{i} \in \mathbb{R}^{d_{y}}$ of some unknown function $f: x \rightarrow y$
- Goal: Find a surrogate model which predicts $y=f(x)$ for a new x
- Major Assumption: The output data y_{i} lies on a lower-dimensional manifold

Figure: One example of in- and output data

Basic Idea

- Deal with the non-linearity of the manifold by locally approximating it by affine/linear sub-spaces (i.e. a reduced order basis)
- Associate each data point with the corresponding sub-space
- Learn a rule for the input space, which associates a new point with the "best" subspace

Figure: 4 sub-spaces and the resulting classification of the data points

Probabilistic Formulation

- The model considered can be thought of as a mixture model in the output space with the mixing coefficients depending on x
distribution for component m
- $P(y \mid x)=\sum_{m=1}^{M}$

$$
\underbrace{P(c=m \mid x)}
$$

$$
\overbrace{P(y \mid c=m)}
$$

mixing coefficient for component m

- To fit the model to data, i.e. train, we first parametrize it (parameters θ)
- Fitting the model is done by maximizing the complete data likelihood (or posterior) using the Expectation Maximization (EM) algorithm

Probabilistic Formulation 2

Complete data \log posterior: $\log P(\theta \mid c, y ; x)=$

$$
\begin{align*}
& \sum_{n=1}^{N} \sum_{m=1}^{M} 1\left(c_{n}=m\right)\left[\log P\left(y_{n} \mid c_{n}=m, \theta\right) \log P\left(c_{n}=m \mid \theta ; x_{n}\right)\right] \\
& \quad+\log P(\theta \mid x)+C \tag{1}
\end{align*}
$$

For the expectation of the log posterior w.r.t. the distribution of c given some fixed values θ^{*} of the parameters this yields:

$$
\begin{align*}
Q\left(\theta \mid \theta^{*}\right) & =E_{c}\left[\log P(\theta \mid c, y ; x) \mid y ; \theta^{*}\right] \tag{2}\\
& =Q\left(\theta_{y} \mid \theta^{*}\right)+Q\left(\theta_{c} \mid \theta^{*}\right) \tag{3}
\end{align*}
$$

θ_{y} are the parameters of $P(y \mid c=m)$ and θ_{c} of $P(c=m \mid x)$

Probabilistic Principal Component Analysis

- Probabilistic extension of the well known Principal Component Analysis (PCA)
- PCA finds the q dimensional subspace with the least squared projection error
- Sub-space is represented by the middle μ and the q vectors in $W \in \mathbb{R}^{d_{y}, q}$
- $P(y \mid c=m)=\mathcal{N}\left(\mu_{m}, \Sigma_{m}\right)$ and $\Sigma_{m}=\sigma_{m}^{2} I+W_{m} W_{m}^{T}$

Obstacles in the way

(1) The number of mixture components M is hard to determine a priori
(2) Finding initial values for the parameters θ is hard (local minima)
(3) Multi-class Classification (for $M>3$) is not easy

Proposed Algorithmic solution

- Start with only one mixing component and iteratively refine the model by adding new components
- The "worst" mixing component is replaced by two new components
- Each point that "belonged" to the original component is "assigned" to one of the two succeeding components
- This leads to a binary tree structure with mixture components on all terminal leafs and binary classification at each internal node

Illustrating Example: Initial configuration

- $\left(y_{1}, y_{2}\right)=f\left(x_{1}, x_{2}\right)=\left(\cos \left(\sqrt{\frac{x_{2}}{x_{1}}}\right),-\sqrt{\frac{x_{2}}{x_{1}}} \sin \left(\sqrt{\frac{x_{2}}{x_{1}}}\right)\right)$

Illustrating Example: After first split

Illustrating Example: Upper left leaf after split

Illustrating Example: Whole tree after two splits

Obstacles no longer in the way

(1) The iterative refinement stops at a prescribed level of accuracy
(2) At each split initial values for only two PPCAs have to be found. This could be done via e.g. k-means or the responsibility split
(3) At each Split only a binary classification problem has to be solved

Classification

- Because of the Tree structure only a binary classifier is needed
- Tipping: Relevance Vector Machine (RVM) is a probabilistic and mostly sparser version of the support vector machine (SVM)
- Linking function: $P(c l a s s=1 \mid x)=\sigma\left(w^{\top} \phi(x)\right)=\frac{1}{1+\exp \left\{-w^{\top} \phi(x)\right\}}$
- $\phi(x)=\left(\phi_{1}(x), \ldots, \phi_{N}(x)\right)$ are called the basis functions
- Class labels: $c_{i}=1$ if point i belongs to class 1 and $c_{i}=0$ otherwise
- Bernoulli-likelihood:
$L=P(c \mid w ; x)=\prod_{i=1}^{N} \sigma\left(w^{T} \phi\left(x_{i}\right)\right)^{c_{i}}\left[1-\sigma\left(w^{T} \phi\left(x_{i}\right)\right)\right]^{1-c_{i}}$

Basis functions

- bias term: $\phi(x)=1$
- linear: $\phi(x)=x$
- polynomial: e.g. $\phi(x)=x_{1} x_{2}$
- Kernels: $\phi(x)=K\left(x, x^{(j)}\right)$ and $x^{(j)}$ is mostly another data point
- linear: $K\left(x, x^{(j)}\right)=x^{\top} x^{(j)}$
- Polynomial: $K\left(x, x^{(j)}\right)=\left(\gamma x^{T} x^{(j)}+c\right)^{d}$
- Gaussian/RBF: $K\left(x, x^{(j)}\right)=\exp \left(\frac{-1}{r^{2}}\left\|x-x^{(j)}\right\|_{2}^{2}\right)$
- $K\left(x, x^{(j)}\right)$ represents a dot product in a possibly infinite dimensional feature space

RVM: example: Ripley Synthetic Data

- Gaussian Kernels centered at each data point as basis functions
- Color = class posterior
- White line $=$ decision boundary i.e.

$$
P(\text { class }=1 \mid x)=P(\text { class }=2 \mid x)=0.5
$$

Algorithm: Overview

MCR bound

- The experiments show that the Missclassification Rate (MCR) of each split is a parameter very well describing the overall performance of the algorithm
- Goal: establish a formula for the maximum MCR s.t. the split does decrease the Predicted Squared Error
- Assume $y \sim p \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2} I+W_{1} W_{1}^{T}\right)+(1-p) \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2} I+W_{2} W_{2}^{T}\right)$
- Formula for the simplified case $q=q_{1}=q_{2}=1$, $\left\|w_{1}\right\|_{2}^{2}=\left\|w_{2}\right\|_{2}^{2}=\lambda^{2}$ and the σ belonging to the PPCA for all points one has:

$$
\operatorname{MCR}_{\max }=(n-1) \frac{\sigma^{2}-\sigma_{1}^{2}}{\left\|\mu_{1}-\mu_{2}\right\|_{2}^{2}+\left(1-\cos ^{2}\left(\angle\left(w_{1}, w_{2}\right)\right)\right) \lambda^{2}}
$$

Sharpness-Increase

- Problem: Sometimes the classifier assigns probabilities close to 0.5 to most of the points \Rightarrow the difficulty of the problem is not (notably) decreased by the split
- Solution: After training increase the magnitude of w
- Multiply the likelihood by a heuristic
- Let $a_{i}=\sigma\left(w^{T} \phi\left(x_{i}\right)\right)$, then $\tilde{L}=P(c \mid w ; x) h(w)$
- similar to the inverse of the Gini impurity define:
$h(w)=\prod_{i=1}^{N}\left[\frac{1}{\left(a_{i}\left(1-a_{i}\right)^{\lambda}\right.}\right]^{R_{i}}, \lambda \geq 0$
- I showed that for $w_{\text {new }}=\alpha w_{\text {old }}$ and $\lambda<\lambda_{\max }=f\left(x, R, \frac{w_{\text {old }}}{\left\|w_{\text {old }}\right\|_{2}}\right)$ the maximizer $\alpha *$ is existent and unique
- For $\lambda=0.9 \lambda_{\max }: \alpha *$ is about 2 to 10 depending on the problem

Adapted Gaussian Kernels

- For this application it would be best to have:

$$
K\left(x, x_{j}\right)=\exp \left(\frac{-1}{r^{2}}\left\|f(x)-f\left(x_{j}\right)\right\|_{2}^{2}\right)
$$

- Taylor expansion around $x_{j}: f(x) \approx f\left(x_{j}\right)+D f\left(x_{j}\right)\left(x-x_{j}\right)$
- $K\left(x, x_{j}\right) \approx \exp \left(-\frac{1}{r^{2}}\left(x-x_{j}\right)^{T}\left(D f\left(x_{j}\right)\right)^{T} D f\left(x_{j}\right)\left(x-x_{j}\right)\right)$
- Example: Let $f(x)=b^{T} x$ then $K\left(x, x_{j}\right)=\exp \left(-\frac{1}{r^{2}}\left(b^{T}\left(x-x_{j}\right)\right)^{2}\right)$
- Challenge: Estimate $\operatorname{Df}\left(x_{j}\right)$ in an appropriate way, e.g. when $f(x) \in\{0,1\}$
- Some more details in my thesis, but still more work to do

Section 2

Examples and Discussion

Kraichnan Orszag three mode problem (KO-3)

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{dt}} z_{1}=z_{1} z_{3} \\
& \frac{\mathrm{~d}}{\mathrm{dt}} z_{2}=-z_{2} z_{3} \tag{4}\\
& \frac{\mathrm{~d}}{\mathrm{dt}} z_{3}=-z_{1}^{2}+z_{2}^{2}
\end{align*}
$$

Initial Conditions:

- $z_{1}(0)=1$ (fixed)
- $z_{3}(0)=1$ (fixed)
- $z_{2}(0) \in[-0.04,0.04]$ s.t. $z_{2}(0)=0.08 x_{1}-0.04$
- $T \in[10,12]$ s.t. $T=2 x_{2}+10$

Problem setup:

- input: $x_{1}, x_{2} \sim \operatorname{unif}(0,1)$
- output: $y_{i}=z_{i}(T)$

KO-3: Parameters

- Parameters used: $N=50$ to 750 and $5000, q=1$, and max. depth $=$ 3, 7 and 11
- Different σ (0.005 and 0.00025) were used and I cross validated with different data-sets
- A very detailed analysis can be found in the thesis
- I used radial basis functions, i.e.:
$\phi(x)=\left(1, K_{G}\left(x, x^{(1)}\right), \ldots, K_{G}\left(x, x^{(m)}\right)\right)$
- $m=\min (N, 500)$ and the centers $x^{(1)}, \ldots, x^{(m)}$ are randomly drawn without replacement from all training data points in each split

KO-3: Results: training points

input space

output space

+ leaf number 3
leaf number 4
leaf number 6

KO-3: Results: segmentation

KO-3: Results: small trees

KO-3: Results: large tree

- max depth $=11 \rightarrow$ max number nodes $=2047$
- Tree grew 503 nodes
- Root Mean Squared Test Error $\left(N_{\text {Test }}=10000\right)$
- Tree: $R M S E_{\text {Test }} \approx 0.025 \approx 0.041 m_{Y}$
- PPCA: $R M S E_{\text {Test }} \approx 0.327 \approx 0.542 m_{Y}$
- $m_{Y}=\frac{1}{N d_{y}} \sum_{n=1}^{N} \sum_{d=1}^{d_{y}} \operatorname{abs}\left(y_{i}^{(n)}\right) \approx 0.604$
- For max depth $=7$ and $N=750$ one already achieves $R M S E_{\text {Test }} \approx 0.030$

Heat Conduction in 2-D Plate: Setup

- Steady state temperature distribution in a two dimensional plate
- The plate is discretized using $10 \times 10=100$ elements
- The temperatures along each of the four boundaries is constant
- The conductivity of each element is chosen at random
- Finite Element Solver written by Constantin

Problem setup:

- input: $x=\left(T_{\text {lower }}, T_{\text {right }}, T_{\text {upper }}, T_{\text {left }}, C_{1}, \ldots, C_{100}\right)$
- $T_{\text {... }} \sim \operatorname{unif}(-1,1)$ and $C_{i} \sim \max (\mathcal{N}(1,0.4), 0.1)$
- output: $y_{i}=T_{i}$ the temperatures of the solution at the element midpoints

Heat Conduction in 2-D Plate: Result

- Parameters used: $N=20000, q=2, \sigma_{\max }=0.0025 \approx 0.01 \sigma_{P P C A}$ and max. depth $=9$
- I used linear basis functions, i.e.: $\phi(x)=(1, x)$
- Tree grew to full size possible with max. depth $=9 \rightarrow 255$ internal nodes and 256 leafs
- Root Mean Squared Test Error $\left(N_{\text {Test }}=10000\right)$
- Tree: $R M S E_{\text {Test }} \approx 0.035 \approx 0.100 m_{Y}$
- PPCA: $R M S E_{\text {Test }} \approx 0.236 \approx 0.680 m_{Y}$
- $m_{Y}=\frac{1}{N d_{y}} \sum_{n=1}^{N} \sum_{d=1}^{d_{y}}$ abs $\left(y_{i}^{(n)}\right)$

Heat Conduction in 2-D Plate: Some Examples 1

Original Temperature Field

Tree Approximation

Tree Error: 0.032

PPCA Approximation

PPCA Error: 0.214

Heat Conduction in 2-D Plate: Some Examples 2

Original Temperature Field

Tree Approximation

Tree Error: 0.029

PPCA Approximation

PPCA Error: 0.184

Heat Conduction in 2-D Plate: Some Examples 3

Original Temperature Field

Tree Approximation

Tree Error: 0.018

PPCA Approximation

PPCA Error: 0.116

Heat Conduction in 2-D Plate: Discussion

- Fraction of weights acting on the conductivity:
$f_{\text {conductivity }}=\frac{\sum_{i=6}^{105} w_{i}}{2 \sum_{i=2}^{5} w_{i}+\sum_{i=6}^{105} w_{i}}$

Heat Conduction in 2-D Plate: Discussion

- Relative improvement in standard deviation:
$f_{\sigma}=\frac{\text { weighted mean }\left(\sigma_{\text {left }}, \sigma_{\text {right }}\right)}{\sigma_{\text {before }}}$

Section 3

Results

Advantages of the Algorithm

- The algorithm deals well with high dimensional output in terms of needed data points
- The algorithm deals well with discontinuities
- For low dimensional input non-linearity is well handled
- (P)PCA is well understood and easily interpretable
- The algorithm is fully probabilistic
- Maybe the method represents some generic principle that is applicable to a wide range of problems

Main Challenge

- The main challenge is finding the basis functions / classifier that well suits the structure of the unknown function f
- Possible solution could be:
- Develop basis functions for common problems (FEM etc.)
- Try to find basis functions that adapt to the data (Adapted Gaussian Kernels)
- Rigorously analyze the general structure of the problem and find structure I did not think of

Possible Future Steps

- Tackle the challenge from the slide before
- Use classifiers that optimize some impurity/entropy criterion
- The algorithm is inherently parallel \rightarrow implement a parallel version that can handle large data sets and large (possibly sparse) trees \Rightarrow possibility to compute high dimensional examples with complex basis functions

