Professur für Kontinuumsmechanik

Prof. P.S. Koutsourelakis Fakultät für Maschinenwesen

Boltzmannstrasse 15, D-85748 Garching office number: 0437

Do you want to win 200 Euros?*

Part A (150 Euros)

Let $R = (r_1, r_2, \dots, r_N)$ represent the coordinates $r_i \in \mathbb{R}^3, i = 1, \dots, N$ of N identical particles in three dimensions.

Can you find a representation/map $\mathcal{X}(\mathsf{R}) = \mathcal{X}(\mathsf{r}_1, \mathsf{r}_2, \ldots, \mathsf{r}_N)$ with the following properties: • $\mathcal{X}(\mathsf{R})$ is invariant to permutations of the particles i.e.:

$$\mathcal{X}(\mathsf{r}_1,\mathsf{r}_2,\ldots,\mathsf{r}_{\mathsf{N}})=\mathcal{X}(\mathsf{r}_{\sigma(1)},\mathsf{r}_{\sigma(2)},\ldots,\mathsf{r}_{\sigma(\mathsf{N})})$$

where $(\sigma(1), \sigma(2), \ldots, \sigma(N))$ is is any permutation of the indices $1, 2, \ldots, N$. • $\mathcal{X}(\mathsf{R})$ is invariant to rigid-body motions of the particles i.e.:

$$\mathcal{X}(\mathsf{r}_1,\mathsf{r}_2,\ldots,\mathsf{r}_{\mathsf{N}})=\mathcal{X}(\mathsf{r}_1+\mathsf{c},\mathsf{r}_2+\mathsf{c},\ldots,\mathsf{r}_{\mathsf{N}}+\mathsf{c}), \quad \forall \mathsf{c} \in \mathbb{R}^3$$

and:

$$\mathcal{X}(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N) = \mathcal{X}(\mathbf{Qr}_1, \mathbf{Qr}_2, \dots, \mathbf{Qr}_N)$$

for any orthogonal tensor \mathbf{Q} in \mathbb{R}^3 .

• If $\mathcal{X}(R_1) = \mathcal{X}(R_2)$ for two configurations R_1, R_2 of the N particles, then R_1, R_2 correspond to the same configuration, up to permutation of particles and rigid-body motion.

Part B (50 Euros if at least one of the following are fullfilled in addition to requirements in Part A)

• $\mathcal{X}(\mathbf{R})$ is "easy" to invert i.e. one can easily find a configuration \mathbf{R} of particles (up to permutations and rigid-body motion) given the value of \mathcal{X} .

• \mathcal{X} is decomposable into one-, two-, three-, etc. particle terms, e.g.:

$$\mathcal{X}(\mathsf{r}_1,\mathsf{r}_2,\ldots,\mathsf{r}_N) = \sum_{i_1=1}^N \mathsf{X}_1(\mathsf{r}_{i_1}) + \sum_{i_1=1}^N \sum_{i_2=1}^N \mathsf{X}_2(\mathsf{r}_{i_1},\mathsf{r}_{i_2}) + \sum_{i_1=1}^N \sum_{i_2=1}^N \mathsf{X}_3(\mathsf{r}_{i_1},\mathsf{r}_{i_2},\mathsf{r}_{i_3}) + \ldots$$

*Rules

- Answers must be submitted electronically, in PDF, to p.s.koutsourelakis@tum.de
- Only the first person to correctly respond will receive the prize
- Submissions must provide a correct answer to Part A to be eligible for the prize.
- Only students (Bachelors or M.Sc) are eligible to receive the prize
- For further information, please contact Prof. Koutsourelakis by email at p.s.koutsourelakis@tum.de

Professur für Kontinuumsmechanik - TUM - Garching, Germany

p.s.koutsourelakis@tum.de

http://www.contmech.mw.tum.de/