Do you want to win 200 Euros?*

Part A (150 Euros)

Let $\mathbf{R}=\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{\mathbf{N}}\right)$ represent the coordinates $\mathbf{r}_{\mathbf{i}} \in \mathbb{R}^{\mathbf{3}}, \mathbf{i}=\mathbf{1}, \ldots, \mathbf{N}$ of \mathbf{N} identical particles in three dimensions.
Can you find a representation/map $\mathcal{X}(\mathbf{R})=\mathcal{X}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{\mathrm{N}}\right)$ with the following properties:

- $\mathcal{X}(\mathrm{R})$ is invariant to permutations of the particles i.e.:

$$
\mathcal{X}\left(r_{1}, r_{2}, \ldots, r_{N}\right)=\mathcal{X}\left(r_{\sigma(1)}, r_{\sigma(2)}, \ldots, r_{\sigma(\mathrm{N})}\right)
$$

where $(\sigma(1), \sigma(2), \ldots, \sigma(N))$ is is any permutation of the indices $1,2, \ldots, N$.

- $\mathcal{X}(\mathrm{R})$ is invariant to rigid-body motions of the particles i.e.:

$$
\mathcal{X}\left(r_{1}, r_{2}, \ldots, r_{N}\right)=\mathcal{X}\left(r_{1}+c, r_{2}+c, \ldots, r_{N}+c\right), \quad \forall c \in \mathbb{R}^{3}
$$

and:

$$
\mathcal{X}\left(r_{1}, r_{2}, \ldots, r_{N}\right)=\mathcal{X}\left(\mathrm{Qr}_{1}, Q r_{2}, \ldots, Q r_{N}\right)
$$

for any orthogonal tensor \mathbf{Q} in \mathbb{R}^{3}.

- If $\mathcal{X}\left(\mathbf{R}_{\mathbf{1}}\right)=\mathcal{X}\left(\mathbf{R}_{\mathbf{2}}\right)$ for two configurations $\mathbf{R}_{\mathbf{1}}, \mathbf{R}_{\mathbf{2}}$ of the \mathbf{N} particles, then $\mathbf{R}_{\mathbf{1}}, \mathbf{R}_{\mathbf{2}}$ correspond to the same configuration, up to permutation of particles and rigid-body motion.

Part B (50 Euros if at least one of the following are fullfilled in addition to requirements in Part A)

- $\mathcal{X}(\mathbf{R})$ is "easy" to invert i.e. one can easily find a configuration \mathbf{R} of particles (up to permutations and rigid-body motion) given the value of \mathcal{X}.
- \mathcal{X} is decomposable into one-, two-, three-, etc. particle terms, e.g.:

$$
\mathcal{X}\left(r_{1}, r_{2}, \ldots, r_{N}\right)=\sum_{i_{1}=1}^{N} X_{1}\left(r_{i_{1}}\right)+\sum_{i_{1}=1}^{N} \sum_{i_{2}=1}^{N} X_{2}\left(r_{i_{1}}, r_{i_{2}}\right)+\sum_{i_{1}=1}^{N} \sum_{i_{2}=1}^{N} \sum_{i_{3}=1}^{N} X_{3}\left(r_{i_{1}}, r_{i_{2}}, r_{i_{3}}\right)+\ldots
$$

*Rules

[^0]- Only the first person to correctly respond will receive the prize
- Submissions must provide a correct answer to Part A to be eligible for the prize.
- Only students (Bachelors or M.Sc) are eligible to receive the prize
- For further information, please contact Prof. Koutsourelakis bv email at p.s.koutsourelakis@tum.de

[^0]: - Answers must be submitted electronically, in PDF, to p.s.koutsourelakis@tum.de

