Dr. Magdalena Schreter-Fleischhacker
Contact
- currently on maternity leave
- Room: t.b.d.
- Email: magdalena.schreter@tum.de
- Phone: t.b.d.
Research interests
- Physics-based computational modeling of coupled liquid-powder-gas dynamics in metal additive manufacturing: Focus on modeling of melt pool dynamics and powder-gas interaction
- Computational modeling of multi-phase flows: Development and application of cut-element based sharp interface methods and consistent diffuse interface methods using continuous and discontinuous Galerkin schemes for accurately simulating multi-phase fluid dynamics.
- Constitutive modeling of quasi-brittle materials: Advanced modeling of material behavior (e.g., anisotropy, gradient-enhanced damage mechanics, micropolar continua, damage-plasticity, and hypo-plasticity models) for 3D printed concrete, rock, and soils, to predict cracking, shear banding, and other failure mechanisms.
- High Performance Computing: Matrix-free algorithms and large-scale, parallel computing platforms to enhance the efficiency of simulations (regular contributor to the deal.II library)
Publications
Articles in peer-reviewed international journals
- Much*, N.; Schreter-Fleischhacker*, M.; Munch, P.; Kronbichler, M.; Wall, W. A.; Meier, C. (2024): Improved accuracy of continuum surface flux models for metal additive manufacturing melt pool simulations. Advanced Modeling and Simulation in Engineering Sciences 11, 16. DOI: 10.1186/s40323-024-00270-6 (* co-first-authorship)
- Gamnitzer, P.; Neuner, M.; Schreter-Fleischhacker, M.; Dummer, A.; Mader, T.; Smaniotto, S.; Hofstetter, G. (2024): Key features of numerical models for the FE-simulation of deep tunnel advance by the NATM. Underground Space 14, pp. 357-376. DOI: 10.1016/j.undsp.2023.06.007
- Mader, T.; Schreter-Fleischhacker, M.; Shkundalova, O.; Neuner, M.; Hofstetter, G. (2023): Constitutive modeling of orthotropic nonlinear mechanical behavior of hardened 3D printed concrete. Acta Mechanica 234, pp. 5893-5918. DOI: 10.1007/s00707-023-03706-z
- Mader, T.; Schreter, M.; Hofstetter, G. (2022): On the Influence of Direction-Dependent Behavior of Rock Mass in Simulations of Deep Tunneling Using a Novel Gradient-Enhanced Transversely Isotropic Damage–Plasticity Model. Applied Sciences 12/17, No. 8532. DOI: 10.3390/app12178532
- Mader, T.; Schreter, M.; Hofstetter, G. (2022): A gradient enhanced transversely isotropic damage plasticity model for rock - formulation and comparison of different approaches. International Journal for Numerical and Analytical Methods in Geomechanics 46/5, pp. 933-960.
DOI: 10.1002/nag.3327 - Meier, C.; Fuchs, S.; Much, N.; Nitzler, J.; Penny, R.; Praegla, P.; Proell, S.; Sun, Y.; Weissbach, R.; Schreter, M.; Hodge, N.; Hart, J.; Wall, W. (2021): Physics-based modeling and predictive simulation of powder bed fusion additive manufacturing across length scales. GAMM-Mitteilungen 44/3, No. e202100014. DOI: 10.1002/gamm.202100014
- Neuner, M.; Dummer, A.; Schreter, M.; Gamnitzer, P.; Hofstetter, G.; Cordes, T. (2021): Chapter Three - From experimental modeling of shotcrete to numerical simulations of tunneling. Advances in Applied Mechanics 54, pp. 205-284. DOI: 10.1016/bs.aams.2020.12.003
- Neuner, M.; Dummer, A.; Schreter, M.; Hofstetter, G. (2020); Cordes, T.; Bergmeister, K.: Nonlinear Time-Dependent Analysis of the Load Bearing Capacity of a Single Permanent Shotcrete Lining at the Brenner Base Tunnel. Structural Engineering International 40/4, pp. 475-483. DOI: 10.1080/10168664.2020.1735979
- Neuner, M.; Schreter, M.; Gamnitzer, P.; Hofstetter, G. (2020): On discrepancies between time-dependent nonlinear 3D and 2D finite element simulations of deep tunnel advance: A numerical study on the Brenner Base Tunnel. Computers and Geotechnics 119, No. 103355. DOI: 10.1016/j.compgeo.2019.103355
- Schreter, M.; Neuner, M.; Hofstetter, G. (2018): Evaluation of the implicit gradient-enhanced regularization of a damage-plasticity rock model. Applied Sciences 8/6, No. 1004. DOI: 10.3390/app8061004
- Schreter, M.; Neuner, M.; Unteregger, D.; Hofstetter, G. (2018): On the importance of advanced constitutive models in finite element simulations of deep tunnel advance. Tunnelling and Underground Space Technology 80, pp. 103-113. DOI: 10.1016/j.tust.2018.06.008
- Azadi Kakavand, M. R.; Neuner, M.; Schreter, M.; Hofstetter, G. (2018): A 3D continuum FE-model for predicting the nonlinear response and failure modes of RC frames in pushover analyses. Bulletin of Earthquake Engineering 16/10, pp. 4893-4917. DOI: 10.1007/s10518-018-0388-7
- Neuner, M.; Schreter, M.; Unteregger, D.; Hofstetter, G. (2017): Influence of the Constitutive Model for Shotcrete on the Predicted Structural Behavior of the Shotcrete Shell of a Deep Tunnel. Materials 10/6, No. 577. DOI: 10.3390/ma10060577
Submitted manuscripts
- Schreter-Fleischhacker, M.; Munch, P.; Much, N.; Kronbichler, M.; Wall, W. A.; Meier, C. (2024): A consistent diffuse-interface model for two-phase flow problems with rapid evaporation. arXiv
- Africa, P. C.; Arndt, D.; Bangerth, W.; Blais, B.; Fehling, M.; Gassmöller, R.; Heister, T.; Heltai, L.; Kinnewig, S.; Kronbichler, M.; Maier, M.; Munch, P.; Schreter-Fleischhacker, M.; Thiele, J. P.; Turcksin, B.; Wells, D.; Yushutin, V. (2024): The deal.II Library, Version 9.6. preprint
Supervised student projects / theses (at TUM)
- Towards DG-Based Thermo-Hydrodynamic Melt Pool Simulations, Master's Thesis, Johannes Resch, 2024, in cooperation with Nils Much
- An efficient DEM-FEM immersed coupling approach for resolved large-scale modeling of fluid-powder particle interaction in metal additive manufacturing, Master's Thesis, Julian Brotz, 2024, in cooperation with Christoph Meier
- A matrix-free cutDG formulation for complex flows, Master's Thesis, Andreas Ritthaler, 2024, in cooperation with Maximilian Bergbauer and Christoph Meier
- Advanced laser modeling for finite-element-based melt pool simulations in metal additive manufacturing, Master’s Thesis, Tinh Vo, 2023, in cooperation with Nils Much
- High-Performance Matrix-Free High-Order Discontinuous Galerkin Level-Set Advection and Reinitialization, Semester's Thesis, Andreas Ritthaler, 2023, in cooperation with Maximilian Bergbauer
- Matrix-free implementation of the Immersed Finite Element method for fluid-structure interaction based on deal.II, Semester's Thesis, Simon Völkl, 2023, in cooperation with Peter Munch
- Visualisation of melt pool dynamics in Selective Laser Melting, Visualization Techniques in Computational Mechanics, 2021, in cooperation with Nils Much
- Analysis of Surface Tension in Two-Phase Flows, Master’s Thesis, Judith Pauen, 2021, in cooperation with Magdalena Schreter and Martin Kronbichler